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An exact perturbation analysis method in Monte Carlo radiation transport calcu-
lations is investigated utilizing the coupling of forward and adjoint simulations. The
vehicle chosen for this investigation is correlated-coupling for time-independent neu-
tron or photon transport problems, which has been applied to material perturbation
isolated from both the source and detector. By initiating forward and adjoint sim-
ulation histories (trajectories) in opposite directions at a position sampled from the
interface between the perturbed and unperturbed materials, the correlated-coupling
can exclusively construct the physical particle histories traversing the perturbed ma-
terial. In other words, only those histories that have influence on the variation of the
detector response are simulated. There exists no approximation in the sense that all
the higher order perturbed terms in the response variation are kept. Moreover, the
statistical error is estimated in the same way as in the confidence interval estimation
in a standard forward or adjoint calculation. The theoretical basis lies in response
decomposition with an enclosure containing both the source and detector. Numerical
results are shown for multi-energy group problemss 2001 Academic Press
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I. INTRODUCTION

In radiation transport calculations, forward Monte Carlo methods solve transport equa
[1] by simulating particles born at a physical source based on the probability density fu
tions for various naturally occurring events. The adjoint transport equation is also solvec
Monte Carlo methods with an artificially constructed transport mechanism [2, 3] that can
interpreted as backward processes in a sense that simulation particles are born at a ph
detector and their scores are collected at the physical source. These standard method:
been practiced for several decades.
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It is sometimes the case that the particle transport from a physical source to a phys
detector is decomposed into several naturally occurring or artificially devised transp
problems. Two-dimensional spatial surfaces may be placed to couple the forward or adj
simulations of the decomposed problems. As a straightforward example, forward and adj
histories (trajectories in state space) are initiated at a physical source and a physical dete
respectively, and the forward and adjoint scores for discretized space—energy—angle cell
tallied at an intermediate surface [4]. As another straightforward example, either forwarc
adjoint histories are initiated and the discretized scores are tallied at the intermediate sul
to create the source distribution for the next stage calculation [5]. On the other hand, forw
and adjoint histories can be initiated in exactly opposite directions at the intermedi
surface without introducing discretization [6]. This discretization-free coupling methc
may be called correlated-coupling, since the initially oppositely moving forward and adjoi
histories are independent, conditional on their common initial variables. This paper seek
combine correlated-coupling with the perturbation analysis of a neutron or photon sour
detector system.

Physically, the probability of the neutral particle’s first entrance to a subdomain dc
not get affected by a change in the material properties therein. In other words, a phys
detector response can be decomposed into a component invariant against, and a comp
influenced by, material changes in a subdomain. Forward-adjoint coupling methods r
be sought to calculate the latter component independently of the former component. T
idea is attractive because only the latter component needs to be calculated to eval
the variation of the detector response, and a radiation detection instrument is generall
independent device to be inserted to measure some properties of a physical system of ints
Moreover, if forward and adjoint simulation histories can be initiated in opposite directio
at the interface between perturbed and unperturbed materials, the physical particle hist
traversing the perturbed material can be exclusively constructed. This paper special
in material changes in a subdomain isolated from both physical source and detector.
corresponding Monte Carlo perturbation analysis becomes a very difficult task because
the particle histories that enter and exit the subdomain before reaching the physical dete
have real influence on the response variation.

In our previous work [7, 8], various possibilities of correlated-coupling were investigate
based on integrals over a spatial surface between a physical source and a physical det
Similar investigations can also be made in terms of response decomposition with surf
integral at an enclosure containing both the physical source and detector. Consequentl
response variation resulting from a material change outside the source-detector enclc
is exactly expressed as the integral over that enclosure of the product of the directic
cosine and two flux quantities: The flux in the forward problem for the spatial subdome
with only the unperturbed material and the flux difference between the adjoint proble
for the whole spatial domain. Such a surface integral can be computed efficiently by
initial-variable sampling methodologies in the correlated coupling [7, 8]. The resultir
computational method has two notable characteristics; first, one Monte Carlo calculat
evaluates the variation of a detector response based on an unbiased estimation of the
integral expression, and second, the statistical error is estimated in the same way as il
confidence interval estimation in a standard forward or adjoint Monte Carlo calculation.
otherwords, without worrying about which of the first, second, and higher order perturbat
treatments is appropriate, one can evaluate response variation by a standard confic
interval estimation using an unbiased sample variance estimator. These characteristic
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advantageous points because standard techniques in Monte Carlo perturbation an:
[9, 10] are generally valid within the framework of finite order perturbation theory, ar
their error estimation often needs intricate treatments.

II. PROBLEM STATEMENT

A source-detector system for neutron or photon is treated in this paper. We cons
material perturbations outside an enclosure containing both the source and detector
derive integral expressions with the product of forward and adjoint angular fluxes at the
closure, which can be used to compute quantities difficult to evaluate by a standard forv
or adjoint Monte Carlo method.

The volume inside the source-detector enclosure is denotagdthe whole spatial
domain byV, and the volume outside the source-detector enclogy¥&p. Figure 1 shows

material perturbation

[0Vsp =dVsp\oV|

d
oY

material perturbation

g |

0Vspn oV

(b)

FIG. 1. Source-detector system and material perturbation. (Two perturbation types are shown; the wi
spatial domain is denoted By and its external surface ) ; a spatial subdomain containing both the source
and detector is denoted B, and the surface enclosing that subdomaidWy,; 9V andaVsp have intersection
in (b) but do not in (a); material outsidés; is perturbed; particle histories are categorized according to whethe
they pass the perturbed subdomain or not, H2 or H1.)
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examples of the source-detector enclosure. Two problems definéchom considered:

1. In problem 1, material 1 occupi&s\Vsp and
2. In problem 2, material 2 occupi&s\ Vsp.

Throughout this paper problems 1 and 2 are denoted by P1 and P2, respectively,
the material inVgp is fixed (remains the same for P1 and P2). The source distributic
S(r, Q, E) and the detector response functibiir, Q, E) are also fixed. Here, as usual,
1 denotes position vectof2 unit vector of direction of movement, arid energy. We
consider the forward and adjoint transport equations for P1 and P2, whose solution exp
a quantity equivalent to particle flux. The forward equations express naturally occurri
particle transport originating from the source. The adjoint equations express artificie
devised backward particle transport originating from the detector. They share the sz
total macroscopic cross sectiah(r, E) defined as the mean number of collisions pel
unit path length travelled. With the interchanged roles of the energies and directions
movements at precollision and at postcollision, the forward and adjoint equations a
share differential scattering macroscopic cross secligit, Q' — Q, E' — E) whose
definition in the forward equation is the mean number of particles with energy in ur
interval aroundE and direction of movement in unit solid angle arouder unit path
length travelled by the particle with’ and®’'. (See [1, 11] for details of transport equation.)
Also, the following physical observation is important: a change in the material propert
in a subdomain affects particle distribution both inside and outside that subdomain, and
solution of the corresponding transport equation is perturbed over the whole spatial dom
Mathematically, this is the consequence of a continuity condition of transport equation.

Ill. THEORETICAL DEVELOPMENT

The purpose of this section is to obtain the exact surface integral expression of
response variation from P1 to P2. The forward transport equation for P1 is ([1, 11]):

Q- YWy (r, Q, E) + Si(r, E)¥y(r, Q, E)
Eo
:/ / So(r, Q — Q, E' — E)Wy(r, Q, E)dQdE
0 4

+S(r,Q,E) forr e Vsp, 1)
Q- VWi(r,Q E)+ (1, Q E)¥i(r, 2, E)

=)
=/ / T1s(f, Q' — Q E' — E)¥y(r, Q,ENdQdE forr € V\Vsp, (2)
0 4
Yi(r,2, E)=0 forreoVandQ -n<0, 3)

with a continuity condition,

Iiira Ui (r—e,Q2,E)= Ii% U (r+€Q2,Q E) forreadaVsp\aV,
€ €

where the macroscopic cross sections in Eq. (1) correspond to a fixed (never perturl
material inVsp; the subscript 1 of the macroscopic cross sections in Eq. (2) implies th
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V\Vsp is occupied by material 1; the subscript 1 in the forward angular flux stands for t
solution corresponding to such material distribution;denotes the unit spherical surface
with its center at the origin; anfy is the maximum energy allowed in the physical problen
under consideration. Throughout this papét,denotes the surface of a volume and the
relative complement of a set (the difference of setsg; dVsp\dV implies thatr belongs

to 8Vsp but does not belong t&V . Equations (1) and (2) may be written as

Q-VV(r, 2 E)+ Xq4(L, 2 E)Wi(r, 2, E)

By
= / / Y150, Q> Q E - E)Wq(r, 2, E)dQ' dE + S(r, 2, E) forreV,
0 4

(L, Q, E) = Xi(r, E) forr e Vsp,
YL, Q2 > QE - E)=3s(r,Q2 - Q E — E) forr e Vsp,
S(r,Q2,E)=0 forr e V\Vsp.

The above equations emphasize that the materi&kinis fixed (remains unperturbed),
and the region outsid€sp is occupied by any material designated as 1, while Egs. (1) ar
(2) emphasize the explicit form i¥sp and inV\Vsp, respectively, taken by the forward
transport equation for P1. This paper follows the style of Egs. (1) and (2). The unnumbe
continuity condition clarifies that there is no singular source such as a point or surface so
ataVsp\dV; the source is strictly contained insitfep. The adjoint transport equation for
P2is ([11])

—Q - VWi(r,Q, E) 4+ Zy(r, E)¥i(r, Q, E)

Eo
=/ / Te(L, @ — @, E — ENW(r, @, E)ddE
0 A

+D(r,Q,E) forr e Vsp, 4)
~Q- VWL, Q, E) + Tou(L, @, E)¥(L, @, E)

Eo
=/ / Yos(r, 2 — @, E - ENWi(r,Q, E)dQdE forr e V\Vsp, (5)
0 A
w(r,Q, E)=0 forredVandQ- -n=> 0, (6)
with a continuity condition,

"?8 w(r—eQ,Q E)= ”?S Ui(r+€Q,Q E) forredVsp\aV,
€ €

where the macroscopic cross sections in Eq. (4) are the same as those in Eq. (1)
subscript 2 of the macroscopic cross sections in Eq. (5) impliesviats occupied by
any material designated as 2; and the subscript 2 in the adjoint angular flux stands fol
solution corresponding to such material distribution. The unnumbered continuity condit
clarifies that there is no singular detector such as a point or surface dete@¥&padV ;
the detector is strictly contained insidfep.

We multiply Eq. (1) byWs and Eq. (4) by, subtract the latter from the former, integrate
over Vsp, direction of movement and energy. The terms with the total macroscopic cre
section cancel out. The terms with the differential scattering macroscopic cross sec
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cancel out by interchanging the integration varialiie& and<’, E’ in one of these terms.
Then, converting the remaining volume integral in the left-hand side to the surface
integral @ A) by the divergence theorem, one obtains

Eo
/ / / n- QWi (r, 2 E)Wi(r, 2 E)dE d2dA
aVsp\dV J4r JO
Eo
:/ / / S(r, , E)W;(r, Q, E)dE dedV
VSD 4 0

Eo
- / / / D(r,Q, E)YW (r, 2, E)dEdQdYV, (7
Vsp /47 JO

where in the left-hand side the surface integration domain is intended to cover both (a)
(b) in Fig. 1 with the consideration of the external boundary conditions (3) and (6) for tl
latter. The second term in the right-hand side of Eq. (7) is the physical detector respons
P1[11, 12]:

Eo
Rlz/ / / D(r, Q, E)¥y(r, 2, E)dE d2dV. (8)
VSD 47 JO

The first term in the right-hand side of Eq. (7) is the physical detector response of
[11, 12]:

Eo
R2=/ / S(r, Q. E)Wi(r, 2, E)dE dedV. 9
VSD 47 JO

Therefore, Eq. (7) is rewritten as

=)
R — R = / / / n- QYq(r, Q, E)\I’;(I_, Q E)dEdQdA. (20)
aVsp\aV Jar Jo

Theroles of the forward and the adjoint equations can be interchanged. The adjoint trans
equation for P1is ([1, 11])

—Q - VUi (L, 2, E) + i (L, E)¥y(r, 2, E)

Eo
=/ / (L, Q- Q' E - EHWi(r, Q, E)dQ dE
0 A

+D(r, 2, E) forr e Vsgp, (12)
—Q- V(L Q E)+ 211 (1, Q, E)¥5 (L, 2, E)

Eo
:/ / T1s(1, Q- @ E — ENWi(r, @, ENdQ' dE forr e V\Ves, (12)
0 A
i, Q,E)y=0 forredVand2 -n>0, (13)
with a continuity condition,

“?3 Ui(r—eQ,Q E) = Ii?g Ui(r+€Q,Q E) forredVsp\dV.
€ €
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The forward transport equation for P2 is ([1, 11])
Q.- VW (r,Q E) + (L, E)Wo(r, 2, E)
Eo
:/ / YL, Q' — Q E — E)Wy(r, @, E)YdQ' dFE
0 4

+S(r,Q, E) forr e Vsp, (14)
Q : Y\IJZ(I—, Qa E) + 22,1: (I—’ Q’ E)\IJZ(I—5 Qa E)

Eo
=/ / Tos(l, @ — Q E — E)Wy(r,Q, EYd dE forr € V\Vsp, (15)
0 4
Wy(r,Q2,E)=0 forr edVandQ-n <0, (16)

with a continuity condition,

”?8 Uo(r — e, 2 E) = Ii% Wo(r +€Q,Q,E) forr e dVsp\aV.
€ €

By taking the steps similar to those leading to Eq. (7), Egs. (11), (13), (14), and (16) yi
Eo
/ / / n-QWy(r, 2, E)¥i(r, 2 E)YdEdQdA
dVsp\dV J4r JO
Eo
= / / S(r, 2, E)yvi(r, 2, E)dEdQdV
Vsp J4x Jo

. Eo
- / / / D(r, Q, E)W,(r, Q, E)dE dQdV. (17)
VSD 47 JO

In addition to Egs. (8) and (9)3; and R, can also be expressed as

Eo
R — / / S(t, 2, E)¥;(r, 2 E)dE d2dV, (18)
VSD 47 JO
and
Eo
R2=/ / / D(r, Q. E)Wy(r, Q. E)dE d2dV (19)
VSD 47'[ 0

by references [11, 12]. Eq. (17) is rewritten as
Eo
Ri— R = / / / n-QWy(r, 2, E)¥;(r, 2 E)dEdQdA. (20)
E)VSD\E)V 4 0

Since Egs. (11)—(13) and (14)—(16) have simply interchanged the roles of the forward
adjoint problems in Egs. (1)—(3) and (4)—(6), Eq. (20) can be also obtained by interchanc
the subscripts “1” and “2” in Eq. (10).

We consider a special problem wherein a black absorber occdpiés,. Here, the black
absorber has the total macroscopic cross section of infinite magnitude and the differel
scatterring macroscopic cross section of a zero value. PB is used to denote such a sy
problem. In previous work, the so-called black absorber technique (perturbation) was
lized [4, 7]. The difference between the previous work and the work in this paper resic
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in the setup of a spatial surface at which the bilinear integral of forward and adjoint flux
is defined to be calculated. In the former work, the spatial surface encloses either sourc
detector, while in the latter work it encloses both source and detector. Now, we turn to
forward and adjoint transport equation for PB:

Q- VVUg(r, 2, E)+ (L, E)Yg(r, 2, E)
= /EO/ To(L, Q — Q E — E)Wg(r,Q, E)dQ dE
+OS(L,4§2, E) forr € Vsp, (21)
Ye(r,2, E)=0 forredVgpandQ-n <0, (22)
and
—Q-YWE(r, Q E) + %(r, E)Wi(r, 2, E)
= /Eo/ (1, Q - Q' E — E)Wi(r, Q, E)dQ dE
+0D(L[tn&2, E) forr e Vsp, (23)

Ve, 2, E)=0 forredVgpand -n=> 0. (24)

The physical detector response of PB is expressed as ([11, 12])
Eo
Rg = / / / S(r, @, E)yWi(r, 2, E)dEdQdV
VSD 4 0

Eo
=/ / / D(r, Q, E)Wg(r, Q, E)dE d2dV. (25)
VSD A 0

We make material 1 purely absorbirig(s = 0) and letits total macroscopic cross section
tend to infinity (21 — 00). The uncollided escape probability of the forward and adjoin
simulation particles from the purely absorbing materiaMiRVsp, then, monotonically
decreases to zero. This implies thatand ¥y monotonically decrease g andW:

v, | ¥g and \I’I ¥ \I/E asXit — o0 with Y15 = 0.

Thus, when the limit operatioR;; — oo with X1 s = 0 is applied to Egs. (8), (10), (18),
and (20),%; and¥; are bounded by integrable functions that are the particular versions
¥, and¥; resulting from setting1 s = 0 andX ; fixed-finite. The dominated convergence
theorem [13] allows one to interchange the order of the integral and limit in Egs. (8) a
(18) as

Eo
lim R = lim / / / D(r, 2, E)¥(r, 2, E)dEdQdV
VSD 47 0

¥11—>00,%1,s=0 ¥1t—00,%1s=0

1t—>00, X1 s=!

Eo
/ / / D(r,Q, E) lim Yy(r, 2, E)dEdQdV
VSD 4 0 z 0

Eo
/// D(r, Q, E)Wg(r, Q, E)dE d2dV
VSD 47 0

= Rg,
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and

Eo
lim R = lim / / S(r, @, BE)yvi(r, 2, E)ydEdQdV
VSD 47 0

X11—>00,X1,s=0 X1t—00,X1s=0

1t—>00, X1 5=

Eo
/// S(r, Q, E)Wi(r, @, E)dE dQdV
VSD 47 0
Re,

Eo
/ / / S(r, 2, E) lim wi(r,Q, EydEdQdV
VSD 4 0 z 0

where Eq. (25) was used for the equalities befgeSimilarly, the dominated convergence
theorem is applied to the right-hand side of Egs. (10) and (20) as

=)
lim / / / n-QW(r, 2 E)¥;(r, Q2 E)dEdQdA.
dVsp\oV J4r JO

11—>00,%1s=0

Eo
=/ / / n-Q lim W (r,Q E)Wi(r,Q E)dEdQdA
aVsp\aV Jax Jo 0

Y11—>00,81 5=

Eo
=/ / / n-QW¥g(r, 2, E)\I—’;(J‘_, Q,E)dEdQdA,
Vep\aV Jar Jo

and

Eo
lim / / / n-QWy(r, 2 E)i(r, Q E)dEdQdA
dVsp\oV J4r JO

¥11—00,%15=0

Eo
=/ / / n-QW,(r,2 E) lim Wi, Q E)dEd2dA
3Vep\aV J4x JO z 0

1t—>00, X1 s=
Eo
=/ / / n-QWy(r, Q E)Wi(r, @ E)dE dQdA
aVsp\aV Jar Jo

Hence, by taking into account the fact tHat is constant with respect t8;; and X1 s,
Egs. (10) and (20) witl; 1 — oo andX s = O yield

Eo
R, = Rg +/ / / n-QWe(r,Q E)¥s(r,Q E)dEdQRIA,  (26)
aVsp\aV J n-Q>0.J0
and

Eo
R, = Rg — / / / n- QW,(r, Q, E)\I’E(I_, Q,E)dEdQdA
dVsp\dV J n-2<0J0

Eo
RB+/ / / In-QWy(r, @, E)Wi(r, 2 E)dEdQdA (27)
9Vsp\dV J n.2<0J0

By interchanging the forward and adjoint roles of P1 and P2, one obtains

Eo
R, = Rg +/ / / n-QWg(L, Q E)Wi(r,Q E)dEdQdA,  (28)
aVSD\f)V n-Q2>0J0
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and

Eo
R = Rg — / / / n- QY (r, 2, E)\I’E(L, Q,E)dEdQdA
aVsp\aV Jn.2<0Jo

Eo
= RB+/ / / n- QW (L, @, E)Pi(r, 2, E)YdEdQdA (29)
Vsp\aV J n.2<0Jo

Equations (26)—(29) are mathematical statements of response decompasitector
response is decomposed into the components resulting from particle histories either conf
inside a source-detector enclosure or crossing and recrossing the same enclbisere.
first term in Egs. (26)—(29) is the response resulting from the physical particle histor
designated as “H1” in Fig. 1 and is invariant with respect to material changes outside
source-detector enclosure. The second term in the same equations is the response res
from the physical particle histories designated as “H2” in Figure 1 and is influened by t
foregoing changes. Equations. (26) and (28) yield

Eo
Rl—R2=/ / / n-QW¥g(r, 2, E)
dVsp\oV J n:2>0.J0

x [Wi(r, @, E)—Wvi(r, 2, E)]dEdQdA, (30)

and Egs. (27) and (29) yield

. Eo
Ri— R = / / / n- Q|
3Vsp\aV J/n.2<0 J0

x [W1(L, Q, E)—Wy(r, Q, E)]Wi(r, Q E)dE dRdA. (31)

Equations (30) and (31) are the exact expressions of the response variation from
to P2.

There exists previous work that is physically different from, but resembles in appearar
the work in this paper. Hoffmaet al. studied response at a detector placed inside a pertur
ing material [14]. This is obviously different from the physical problem analyzed in thi
section. However, since the response can be expressed by a surface integral at the enc
encompassing the perturbing material, mathematical expressions similar in appearan
Egs. (30) and (31) appeared in the work of Hoffm&ral. On the other hand, &ichez
has shown that the convolution of Green'’s functions can systematically analyze a pai
problems whose material distributions coincide in their common subdomain [15]. Wh
the domain of one problem is contained in the domain of the other problem, the pai
problems play the same role as P1 and PB or P2 and PB. Therefore, despite the app
difference in methodologies employed, the perturbation analysis in this section is clos
related to the Green’s function method in the work ahghez.

We compute Eq. (30) following the procedures in correlated coupling [7, 8]. To do thi
an arbitrary nonzero space—energy distribution function is introduced:

Eo
/ / f(r, E)dEdA=1, f(r,E) > 0.
dVsp\dV JO

One may utilize the discretized energy group structure in a nuclear cross section libr:
f(r,E)=(1/G) 25:1 fo(r, E)wherefaVSD\av fEEj*l fq(r, E)YdEdA=1, fg(r, E)=0
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for E outside(Egy, Eg_1) and 0= Eg < - - - < Eop. Eq. (30) is then rewritten as

Eo T
Ry — R2=/ / / T we(r, Q E)[¥i(L, Q E)
! aVep\aV Jno=0Jo  F(L, E) ® !

f(r,B)n-Q
~w 0

dE dQdA (32)
Here, we considef (r, E)n - Q/n the probability density function of initial variables be-
causefy .oy Jnoso OE"[ f(r,E)n-Q/7]dE dQdA = 1. The sampling fronf (r, E)n -
Q/m then corresponds to the initial (source) variable sampling in a standard forward
adjoint Monte Carlo calculation, and/f (r, E) becomes an initial position-energy de-
pendent multiplier. Conditional on the sampled initial varialllesQ, E) = (r,, Q,, E)),
the formally adjoint problems of Eqgs. (21) and (22), Egs. (11)—(13), and Eqgs. (4)—(6)
constructed with the unit monoenergetic and monodirectional point source or detector
(r,, 9, E)) in order to calculatelg (L, Q,, E)), ¥;(r,, Q,, E)), and¥3(r,, Q, E)),
respectively, by independent Monte Carlo simulations. See Appendix A about these
mally adjoint problems. The product of the score fiog(r,, Q,, E;) and the score dif-
ference ford;(r,, Q,, E|) andW3(r,, Q,, E|) multipled byx/f (r,, E|) is a statistical
entity. Conditional independence [16] ensures that the conditional expectation assumin
sampledinitial variable& |, Q,, E))is[z/f (r,, E)]Vs(L,, 2, E)) [V (L, Q, E/) —
(L, 2, E))]. This quantity integrated with the probability density functibfx,, E;)n -
Q,/m of the initial variables(r,, ,, E;) becomes the expected value of the propose
computational procedures by the theory of conditional expectation [17]. This yields un
asedness. See Fig. 2 for the initial movements corresponding 1€, , E,). Since adjoint
simulation particles move in the direction opposit&tdhe forward and adjoint simulation
particles are initiated in exactly opposite directions atMoreover, the particle’s histories

forward histories
to estimate:

2, /'
e /‘P:(L,,Q,,E,)
adjoint history # |
to estimate: o i / Wo(r,Qy,E)
‘PB(EMQME[) /
iy re—

e common material to all histories | « material 1 or 2 for forward histories
¢ black absorber for adjoint history

dVsp \ BV

FIG. 2. Initial movements of forward and adjoint histories to compute Eq. (30) (sampled initial variables &
positionr,, energyE; and directior).
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are initiated at the boundary between fixed and variable materials (perturbed and un
turbed subdomains). These two aspects correspond to exclusively constructing the phy
particle history traversing perturbed material. The development in this section shows 1
the calculation of a response variation is a new application area to correlated coupling
forward and adjoint histories.

There are several notable characteristics in the proposed computational scheme. |
the procedure of taking the difference between the results from two independent Ma
Carlo calculations after all the histories are completed is avoided with no approximatior
a sense that all the higher order perturbed terms are kept. Recall that the score differenc
(L, Q, E))and¥i(r,, Q,, E|)is simply calculated at each samplingaf, 2, E)).
Second, the statistical error is estimated in the same way as in the confidence inte
estimation in a standard forward or adjoint simulation because upon samp|in@, , E)
from f(r, E)n- Q/m, a statistical entity becomes

ﬁ[adjoint Monte Carlo score fobg(r,, 2, E|)]

x {[forward Monte Carlo score fob; (r,, Q,, E|)]
— [forward Monte Carlo score fob; (r,, Q,, E|)]}. (33)

Since(t,, Q,, E|) are sampled independently, variance estimation by the sample variar
formula is unbiased. Those two characteristics can be advantageous points over star
techniques in Monte Carlo perturbation analysis [9, 10].

Equation (31) is also rewritten as

Eo T
Ri—R =/ / / —— [V (r, 2, E)
T aVep\oV Jna<0Jo  F(L, E)[ !

C w2 B, 2, BB e o g (34)
T

All the foregoing arguments after Eq. (32) can be made with the interchanged roles
forward and adjoint problems. They are straightforward and obvious, and their presenta
is omitted.

The analysis in this section remains valid as far as the following conditions are sa
fied: there exists a path connecting a physical source and a physical detector only thrc
fixed material (unperturbed subdomain), and both the source and detector are isolated
variable material (perturbed subdomain). One can then consider a source-detector el
sure whose inside exclusively contains the unperturbed subdomain. However, for probl
wherein any source-detector enclosure always contains part of the perturbed subdon
the analysis leading to Egs. (26)—(29) becomes invalid. Such problems are related tc
problem treated by the adjoint difference method by Hoffetzal.[14]. See Appendix B for
details.

IV. NUMERICAL RESULTS

Numerical results are shown for multi-energy group problems with the group maci
scopic cross sections derived in an approximate way [11]. One of the reasons for thi
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that continuous energy adjoint Monte Carlo is not available in full generality [18]. Tt
other reason is that multi-energy group problems serve the purpose of numerically shov
the correctness of the proposed correlated coupling procedures. All calculations are
by the MCNP code [19] for neutral radiation particle transport with a new correlated cc
pling option incorporated by the authors of this paper. Results from the correlated coup
are compared with those from taking the difference between two independent stanc
forward calculations after the completion of all the histories. Here, the word “standat
is intended to imply that a simulation particle is born at a physical source and its sc
is tallied at a physical detector. The reason for the foregoing comparison is that co
lated coupling unbiasedly computes the exact expression of response variation in Egs.
and (31) with the statistical error unbiasedly estimated in the same way as standard
ward calculations. The comparison should be made with a method with no approxima
and an unbiased sample variance estimation. Implicit particle capture with weight nr
tiplication is used. Parameters for Russian roulette are set uniformly over all energy
spatial domains and are the same for the two independent standard forward calcula
and the forward and adjoint calculations in the correlated coupling. The density fut
tion f (L, E) for initial-variable sampling is taken to be uniform over space and energ
groups.

Batch-average product processing [7], the calculation of the three batch-averages fo
scoresin Eg. (33), isemployed. Thisis because when the product of two stochastic quan
is processed as one statistical entity, its statistical porperty improves in a hybrid fashiol
the statistical properties of both the quantities improve, and this effect often overcomes
increase of computational time. The advantage of batch-average product processing
numerically demonstrated in [7]. Upon sampling initial-variables based on Eg. (32), t
forward flux in Eq. (30) is calculated by a batch of adjoint simulations. When all of th
simulations yield a zero score, zero is recorded as a statistical entity, the succeeding fon
simulations for the two adjoint fluxes in Eq. (30) are skipped and the next initial-variabl
are sampled. When some of the preceding adjoint simulations yield nhonzero scores
succeeding two batches of forward simulations are implemented, and Eq. (33) with
three batch-averaged scores is recorded as a statistical entity. The number of historie
batch is taken to be larger for the succeeding simulations than for the preceding simula
following numerical analysis in [7]. In the calculation of Eq. (31) with the initial-variable
sampling based on Eq. (34), the role of forward and adjoint simulations are interchanc
The adjoint flux in Eq. (31) is calculated by a batch of forward simulations. When all
the simulations yield a zero score, zero is recorded as a statistical entity, the succee
adjoint simulations for the two forward fluxes in Eq. (31) are skipped and the next initie
variables are sampled. When some of the preceding forward simulations yield non:
scores, the succeeding two batches of adjoint simulations are implemented and the
batch-averaged scores are processed as in Eq. (33) with the interchaned roles of the for
and adjoint simulations and fluxes.

Table | shows three energy group macroscopic cross sections for fictitious materials.
values of these macroscopic cross sections are intended to explore a characteristic fe
of the proposed procedures. Figure 3 shows the arrangement of a source, a detecto
perturbed spatial subdomains, cubes 1 and 2. Material inside either cube 1 or 2 is
turbed. The material in the unperturbed spatial subdomain is fixed to material 1. Tabl
shows the flux difference resulting from the perturbation in cube 1 from material 2
material 3. Here, P1 corresponds to material 2 in cube 1 and P2 material 3 in cube
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TABLE |

Three Energy Group Macroscopic Cross Sections in cm* with Isotropic Scattering

Material numberj

1 2 3 4
i1 0.333333 0.333333 0.333333 0.333333
itz 0.5 0.5 0.5 0.5
T3 0.666666 0.666666 0.666666 0.666666
Tis1 0.326666 0.3 0.283333 0.166666
Tis2 0.49 0.45 0.425 0.25
Yjs3 0.653333 0.6 0.566666 0.333333
Zjsio1 0.294 0.27 0.255 0.15
js1-2 0.032666 0.03 0.028333 0.016666
Xjs2-2 0.441 0.405 0.3825 0.225
2523 0.049000 0.045 0.0425 0.025
¥ s3-3 0.653333 0.6 0.566666 0.333333
a Other group transfer macroscopic cross sections are zero.
external surface
detector
firerenertfip
\ j source
source-detector arrangement
(not scaled; perturbed subdomains, cubes 1 and 2, not shown)
cubsid  cled cube 2 cube 1

source

FIG. 3. Arrangement of source, detector, and perturbed spatial subdomains for three energy group probls
(The whole spatial domain is a cylinder with 45 cm radius and 90 cm length; the source and detector are sp
with 1.5 cm radius, and their centers lie on the cylinder axis and are separated by 16 cm and away from
top and bottom surfaces by equal distances; either cube 1 or 2 is a materially perturbed subdomain as in |
Fig. 1; the center of cube 1 lies at the midpoint of the centers of the source and detector; the side of cube 1 is ¢
two surfaces of cube 1 are vertical to the cylinder axis; any of the surfaces of cube 2 are parallel to some o
surfaces of cube 1; the side of cube 2 is 2 cm; the center of cube 2 lies at the midpoint of one of the sides of

| <

detector

view through side surface

end surface

view through top (bottom)

1 as drawn above.)
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TABLE Il
Flux Difference (cm~2 s~1) Resulting from the Perturbation
from Material 2 to Material 3 inside Cube 1

Difference of two independent Correlated
standard forward calculations coupling
First group 7.28<10°8 5.90x10°¢
(0.103% (0.110%
Second group 8.7%10°® 8.19x10°®
(0.071} (0.060}
Third group 5.16x10°° 5.03x107°
(0.022} (0.016}
cpu time (min.y 10366 3870

Note.Material 1 outside cube 1; first group particle source; flux is nor-
malized per particle born at source.

2 Fractional standard deviation.

® Measured by Digital AlphaStation 600 5.

€2 x 100,000,000 histories.

420,000,000 initial variable samplings based on Eq. (32); 4 adjoint and
2 x 40 forward histories per initial variable.

can be observed that the computed values agree very well. Overall, correlated couy
is about three times as efficient as taking the difference of two standard forward calc
tions. Table Il shows the flux difference resulting from the perturbation in cube 2 fro
material 2 to material 4. Here, P1 corresponds to material 2 in cube 2 and P2 mate
4 in cube 2. It can be observed that the results from taking the difference between

independent forward calculations are hopelessly inefficient for the first and second ene
groups, while all the results in correlated coupling have fractional standard deviations

TABLE 11l
Flux Difference (cm~2 s~1) Resulting from the Perturbation from
Material 2 to Material 4 inside Cube 2

Difference of two independent Correlated
standard forward calculations coupling
First group 8.33x 108 1.47x10°
(12.6% (0.046%
Second group 1.9810° 1.70x10°®
(0.467% (0.036}%
Third group 1.68x10°° 1.56x10°°
(0.106} (0.009%
cpu time (min.y 634F 2747

Note.Material 1 outside cube 2; first group particle source; flux is normalized per
particle born at source.

2 Fractional standard deviation.

b Measured by Digital AlphaStation 600 5.

€2 x 60,000,000 histories.

410,000,000 initial variable samplings based on Eg. (32); 4 adjoint and4D
forward histories per initial variable.
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TABLE IV
Materials for 30 Energy Group Calculations

Material 5: limestone with 20% porosity, 2.3688 gfcm

Material 6: $: 0O :H:Na:Cl=0.360:0.590:0.022:0.011:0.017 in wt%, 2.3g¥cm
Material 7: water (HO), 1.0 g/cnd

Material 8: steel (Fe), 7.86 g/cm

Material 9: helium 3 gas (Hg 0.000502 g/crh

less than 5% with less than half the cpu time of those forward calculations. The result:
Tables Il and Ill suggest that perturbation analysis by correlated coupling can be a v
valuable tool for perturbation in a small spatial subdomain isolated from the source ¢
detector.

Table IV shows materials used in 30 group calculations. Nuclear cross section libr:
accompanied with the MCNP code was used for those materials. Figure 4 shows the ir
rial distribution and source-detector enclosure. An isotropic americium-beryllium neutr
source embedded in steelis considered. Material 5 is changed to material 6 and the differ
of the total flux averaged over the detector volume is calculated. Here, P1 corresponc
material 5 outside the right parallelepiped and P2 material 6 outside that parallelpiped.
material distribution inside the the right parallelepiped is fixed as shown in Fig. 4. Table
shows numerical results for total neutron flux difference. The results from correlated c
pling agree very well with those from two independent standard forward calculations. T
computation of Eq. (31) is much more efficient than two independent standard forw:
calculations, while the computation of Eg. (30) is inefficient. Since the computational o
main of the succeeding simulations is much larger than that of the preceding simulati
the succeeding simulations should have the larger of the physical source and detect
their simulation detector. Here, a simulation detector is intended to stand for a physi
detector in forward simulations or a physical source in adjoint simulations. In the case
Fig. 4, adjoint simulations should be chosen as the succeeding simulations, which imf
the computation of Eq. (31).

Americium-Beryllium
neutron source in

; Detector in magnified cross
material 8 | material 9 section at C
Material 7 .
\ I { -
8.81

]
T 1 T
7.62 cm EZEI 2.54 cm cm
L : L
material 8

) [-8.81 4
10 ’ cm
10.24
|"cm cm ‘l—l broken lines express dVsp
7.62 in(a)inFigure 1
cm

FIG. 4. Infinite medium of material 5 with right parallelepiped of infinite length containing different material
(material 5 not shown; broken lines show the source-detector enclosure).
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TABLE V
Total Neutron Flux Difference (cm~2 s~1) Resulting from the Perturbation outside the Right
Parallelepiped in Fig. 4 from Material 5 to Material 6 in Table IV

Correlated coupling
Difference of two independent

standard forward calculations Eq. (30) Eq. (31)
Flux Difference —1.143x 10* -1.107x 10 —1.165x 10
FSD* 0.0095 0.0382 0.0107
cpu time (miny 11246 1564 1509

2 Fractional standard deviation.

b Measured by Digital AlphaStation 600 5.

2 x 80,000,000 histories.

4960,000 initial variable samplings based on Eq. (32); 4 adjoint anel@ forward histories per initial variable.

€10,000,000 initial variable samplings based on Eq. (34); 4 forward axdl@ adjoint histories per initial
variable.

V. SUMMARY AND DISCUSSION

This paper has investigated a neutron or photon transport problem with perturbing m
rial outside a subdomain containing both the source and detector. Monte Carlo correl:
coupling has been developed which computes the variation of the detector response b
tiating forward and adjoint histories in opposite directions at the surface of the perturb
material. One history simulates the trajectory in the unperturbed subdomain and the o
history simulates the trajectory traversing the perturbed subdomain. In principle, the la
simulation can be applied to many material changes in the perturbed subdomain and
be coupled with just the single former simulation to compute the corresponding respo
variations. The advantageous points of the method developed are summarized as foll
First, the procedure of taking the difference between the results from two independent
culations after the completion of all the histories is avoided with no approximation. T
method is based on the unbiased estimation of the exact surface integral expressic
the response variation. Second, the statistical error of the response variation is estimat
the same way as in the confidence interval estimation in a standard forward or adjoint si
lation. Usually, these two points are not simultaneously satisfied by standard technique
Monte Carlo perturbation analysis [9, 10]. Thus, the methodology developed in Section
may complement conventional practices. There are three immediate possibilities for fur
developments:

1. The application to neutron and photon coupled transport can be investigated by
tending the perturbation analysis in Section Ill to the coupled transport equations w
neutron and photon fluxes.

2. Conventional perturbation analysis techniques such as differential operator sampg
and correlated sampling [3, 9, 10, 12] may be combined with correlated coupling. An attet
can be made at applying these techniques to the forward or adjoint history simulating
trajectory traversing a perturbed subdomain. Batch-average product processing [7] sh
be utilized as in the numerical results in Section IV.

3. The correlated coupling in this paper can be combined with next-event estimat
coupling in the generalized coupled history [6]. Figure 5 schematically shows a proced
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material perturbation

source defector |

(a)
material perturbation

source F2 v A2 detector

(b)

FIG.5. Next-event estimation coupling for perturbation analysis. [‘F1” and “F2” imply the forward historie:
in Figure 2; “AB” implies the adjoint hisotry in Figure 2; material in the perturbed subdomain is made pure
absorbing for the independent adjoint histories “A1” and “A2” starting from the detector; next-event estimati
couples collision sites in F1 with those in Al to estimétgr ,, Q, E;) and collision sites in F2 with those in A2
to estimatel; (r,, 2, Ej).)

to do it. Perturbation invariance (an unbiased perturbation method of midway response
previous work [4, 7] should be applied to improve the next-event estimation using a pur
absorbing material [21]. In principle, a physical particle history is divided into three part
(1) the trajectory from the birth to the first entrance into a perturbed subdomain, (2) 1
trajectory toward a detector after the last exit from the perturbed subdomain, and (3)
trajectory in between. The response decomposition in this paper separates (1) from (2)
(3), or (2) from (1) and (3). The perturbation invariance with a purely absorbing mater
divides the remaining trajectories. Correlated coupling and next-event estimation coupl
couple (1) with (2) and (2) with (3).

APPENDIX A

Three Formally Adjoint Equations Corresponding to Sampled Initial Variables

Suppose thatr,, 2,, E|) are initial variables sampled from the probability density
function f (r, E)n- Q/m over dVsp\dV, the positive half of the unit spherical surface
at the origin and(0, Ep). The formally adjoint equations to estimades(r,, 2, E),
(L, ), E))and¥j(r,, Q,, E|) are presented in this appendix.

The formally adjoint equation to estimaig (1, 2, E;) is

—Q - VOL(r, Q E) + Sy (r, E)dL(r, Q, E)

Eo
=/ / (L, Q2 — Q' E - ENOL(L, @, E)dQ dE forreVep, (Al
0 A
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. (2 —Q))
®p(r, Q, E) =68[dVsp\aV](L — 1,)8(E — E| )ﬁ
: |
forr € 3Vgp\dV andQ -n > 0, (A.2)
PR, 2, E)=0 forredVgpNoVand-n> 0, (A.3)

wheres[dVsp\aV](L — r,) is the Dirac delta function 08Vsp\dV, §2(2 — Q) is the
Dirac delta function on the unit spherical surface at the origin, and Eq. (A.3) is intendec
treat (b) in Fig. 1. (The sétVspN aV is an empty set for (a) in Fig. 1.) Following steps
similar to those leading to Eq. (7), Egs. (21) and (22), and (A.1)—(A.3) yield

Eo
Wp(r,,Q, E) = / S(r, Q, E)oL(r, 2, E)dE ddV. (A.4)
4 JO

Vsp

Equation (A.4) implies that the Monte Carlo simulation of Egs. (A.1)—-(A.3) estimate
leB(L| N Q| N E| )

The formally adjoint equation to estimaig (r,, Q,, E) is

Q- Vo(r,Q, E)+ X (L, E)di(r, 2, E)
= /EOA YL, Q' — Q E — E)®q(r, Q, ENYdQ' dE for r e Vgp, (A.5)
Q- Yd(;l(f_, ;2, E)+ Z1(L, 2, E)P1(r, 2, E)
— /OEOA T16(L, Q' > Q E — E)dy(r, 2, E)dQ dE forr e V\Vsp, (A.6)
x

®(r,2,E)=0 forredVandQ -n<0, (A.7)
Iimn-Qd1(r+€2,2 E)—Ilimn-Qd.(r —e2, 2, E)
€l0 €l0

= §[0Vsp\aV](L — L£)S(E — E|)&(Q2 — Q)
forr € 9Vgp\oV andQ -n > 0, (A.8)
Ii?g D1(L +€Q, Q, E)

= Iiira d(r —eQ,Q,E) forr € 9Vgp\dV andQ -n < 0, (A.9)

where in Eq. (A.8), the unit monoenergetic and monodirectional point source resulting fr
(L, 2, E)) is expressed as a current jump condition. By considering the spatial integ
over an intertal volume strictly contained insilfep and letting its surface overlapVsp
from the negative side @fV gp, Egs. (11), (13) and (A.5), (A.7) yield

Eo
—/ / / D(r,Q2,E)®(r, 2, E)dEdQdV
VSD 47 0
Eo
:/ / / n-Qlim®i(r —eQ, Q, E)¥(r, 2, EyYdEdA K
n.2-0 J9Vsp\aV Jo €l0

Eo
+/ / / n-2limao(r+eQ, Q, E)\I’I(L, Q, E)dEdAC2. (A.10)
n:2<0 JaVsp\aV JO €l0
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By considerling the spatial integral over an internal volume strictly contaiNiggand
letting its external surface overl@ysp from the positive side afVgp\dV, Egs. (11)—(13)
and (A.5)—(A.9) yield

Eo
O:/ / / n-Qlim®y(r +€Q, Q E)Vi(r, 2 E)dEdAK
n.9>0J9Vep\aV JO €l0
Eo
+/ / / n-Qlimo,(r —eQ, Q, E)\DI(I_, Q,E)dEdAA2, (A.11)
n:Q<0 J3Vep\aV JO €l0

where the left-hand side is zero because the volume that is shrinkiag tmntains both the
source and detector, and the so-called contributions representegdyoriginate at the
source, flow out at the detector, do not leak through the the external sexaead survive

a collision with probability one and no multiplication [12]. The current jump conditior
(A.8) with the continuity of¥;(r, Q, E) yields

Eo
/ / / n-Qlim&1(r—eQ, Q, )Wy (L, 2, EYdEdA® + ¥ (r,, 2, E)
020 3Vep\aV J 0 €0
Eo
:/ / / n-Qlim o (r+eQ, Q, E)¥ (L, 2 E)YdEdAA, (A.12)
n:9>0 JaVgp\aV J0 €l0

and Eq. (A.9) yields

Eo
/ / / n-Qlimo(r+eQ, Q, E)\-III(I_,Q, E)dEdADR
n:2<0 Javsp\av Jo €l0
Eo
=/ / / n-Qlim®i(r—eQ, Q, E)¥;(r, Q2 E)yYdEdAXR. (A.13)
n:9<0 JaVgp\aV JO €0

Adding Eq. (A.13) to Eq. (A.12) side by side and using Eqg. (A.11), one obtains

Eo
/ / / n-Qlim®(r—eQ, Q, E)¥(r, 2, EyYdEdAK
n.9>0J9Vep\aV J0O €0

Eo
+/ / / n-Qlime(r+€eQ,Q E)Ui(L, 2 E)dEdAK
n:9<0 J3aVgp\aV JO €l0

+ \IJI(Ll ’ Ql ’ El) =0. (A14)

Equations (A.10) and (A.14) yield

=)
Wir,, Q, E) = // D(r.Q E)dy(r. 2 E)dEdQdV.  (A.15)
VSD 47 JO

Equations (A.15) implies that the Monte Carlo simulation of Egs. (A.5)—(A.9) estimat
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The formally adjoint equation to estimadg (1, 2, E/) is

Q- V&y(r, 2, E) + Zi(r, E)bo(r, Q, E)
Eo
:/ / Ss(r, Q — Q E — E)Do(r, Q,E)dQ' dE for r e Vsp, (A.16)
0 4
Q- Vdy(r, 2, E) + ot (L, Q, E)Po(r, 2, E)
Eo
:/ / Yos(L, Q' — Q E — E)®y(r, Q,ENdQ' dE for r € V\Vsp,
0 4
(A.17)
®o(r,2,E)=0 forredVandQ-n<0, (A.18)
Iimn- Qdy(r +€Q,Q2,E)—limn- Qdy(r — e, 2, E)
€l0 €l0
=8[0Vsp\OV](L — L )S(E — E|)&(2 — Q,) forr e dVgp\dV andQ-n > 0,
(A.19)
Ii% Oo(r+€2,Q E) = Ii% DPy(r—eQ,Q E) forreaVgp\dV andQ-n < 0.
€ €

(A.20)

Through manipulation in the same way as in Egs. (A.5)—(A.15), one obtains

Eo
W3, 2, E) = // D(r, Q, E)do(r, Q, E)dE d2dV. (A.21)
Vgp J4r JO

Eg. (A.21) implies that the Monte Carlo simulation of Egs. (A.16)—(A.20) estimgjés,
Q| N E| )

APPENDIX B
Response Variation Resulting from Material Change Separating a Source
and a Detector and Its Relation to the Adjoint Difference Method

Response variation because of material changes in a subdomain separating a s
and a detector is considered. In other words, a case wherein any source-detector encl
contains part of the perturbed subdomain is considered. The relation to the adjoint differe
method [14] is also described. First, the source is assumed to be situated outside the pertl
subdomain. The forward transport equation for an unperturbed subdomain containing
source is

Q- -V, E)+ XZi(r, E)p(r, Q, E)
Eo
= / / Ys(r, Q2 — Q E — E)(r, 2, ENdQ' dE + S(r, 2, E) forr e Vs,
0 A

(B.1)
nr,2,E)=0 forredVsandQ -n<O0. (B.2)
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The adjoint transport equation for the whole spatial domain is
—Q-Vn(L, 2, E) + X (L, E)pf (L, 2, E)
= /OEDA Ys(r, Q2 — QL E — Epf(r, 2, ENdQ' dE, forr e Vs, (B.3)
—-Q- Yni*(Ln, Q, E)+ Zi(L, Q, B, 2, E)
= /E0/4 Tis(L, Q= Q' E— E)yf(r, 2, EdQ dE'+D(r,Q,E) forreVp,
n (B.4)
i, Q E)y=0 forredVand-n=>0, (B.5)

with a continuity condition at the internal boundary,

"?3 niL—eQ Q E)= Ii?g n(L+eQ,Q E) forreaVsnaVp,

where the subscriptof the macroscopic cross sections in Eg. (B.4) implies that any materi
designated d@scan occupyp, the subscriptof the adjoint flux stands for the corresponding
solution, the whole spatial doma is divided intoVs andVp, S=0in Vp, andD =0

in Vs. Note that the material iN's is the same for both the forward and adjoint equations
and the perturbation is relegated to the arbitrariness of mateiy the black absorber
technique [4, 7], the detector response due to the maidrad two expressions in terms of
n(r, 2, E) andn(r, Q, E):

Eo
R:/// S(r, 2, E)n(r, 2, E)dE dedV
Vs 47 JO

Eo
=/ / / n-Qn(, Q Ey'(L,Q E)dEdQdA  (B.6)
aVsNoVp J n:Q>0J0

The response variation resulting from the material change freni toi = 2 is expressed
as

Eo
R — R = / / / n-Qn(r, Q, E)[n(L, 2, E)
dVsNaVp J n.Q>0J0

— i, 2, E)]dE dQdA. (B.7)

This can be handled as in Eq. (32).
Second, the detector is assumed to be situated outside the perturbed subdomain
adjoint transport equation for an unperturbed subdomain containing the detector is

—Q-VEN (L, Q, E) + Zi (L, E)é¥ (L, Q, E)

Eo
=/ / (1, Q > @, E - ENe*(r, Q, E)dQ dE’
0 A

+D(,Q,E) forr e Vp, (B.8)
E'(r,Q,E)=0 forredVpandQ -n> 0. (B.9)
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The forward transport equation for the whole spatial domain is

Q- V&L, Q E)+ Zi(r, E)§i(L, 2, E)

= /OEOA (1, Q — Q E — E)§(r, @, E)dQ' dE, forr e Vp, (B.10)
Q- V&L, Q E)+ Zi(r, Q E)(L, Q E)

= /OEOA Tis(L,Q - Q E — E)§(r,Q,E)dQdE + S(r,Q,E) forr e Vs,

(B.11)
&I, Q, E)=0 forreoVandQ -n<0, (B.12)

with a continuity condition

"?3 r—eQ, Q E)= ”?3 &L +eQ, Q2 E) forredaVsnaVp.
€ €

By the black absorber technique [4, 7], the detector response resulting from the nmater
has two expressions in terms®f(r, Q, E) and§; (r, 2, E),

Eo
/ / / D, B, Q2 E)dEDRdV
Vp J4r Jo

Eo
—/ / / n-Q&(r, QB (1, Q2 E)dEdAQRdA, (B.13)
aVsNaVp J n:Q<0J0

R

where the positive directions @&VsN aVp in Egs. (B.6) and (B.13) are opposite. The
second equality in Eq. (B.13) is equivalent to Eq. (15) in the work of Hoffietzed. [14].
The response variation resulting from the material changeifrem toi = 2is expressed as

Eo
&—&=—/ /ﬁ / n- Qe @, E) — &L, Q, E)]
dVsNaVp J n:Q<0J0
X £%(r. Q. E)dE dQd A (B.14)

This can be handled as in Eq. (34). Now, we perturb the common macroscopic cross sec
in Vp for the adjoint equations (B.8) and (B.9)

—Q - VE*(L, Q, E) + (1, E)é*(r, Q, E)
Eo - .
= / / Ns(r,2— Q' E— ENE*(r,Q,ENdQ' dE' +D(r, 2, E) forreVp,
0 4

(B.15)
E*(r,Q,E)=0 forredVpandQ -n=> 0, (B.16)

and the forward equations (B.10)—(B.12)
Q- VE (L, Q E)+ S, B)E (. Q E)

EO ~ ~
= / / (1, Q' — Q E' — BE)(r, 2, EdQ dE, forreVp, (B.17)
0 4



532 UEKI AND HOOGENBOOM

Q- VE (L, Q E)+ DL, Q E)E (L, 2, E)
Eo .
= / / Nis(L, Q> Q E - E)(r, 2, EYdQ dE + S(r,Q,E) forreVs,
0 4
(B.18)

&L, Q E)=0 forreaVandQ-n<0, (B.19)

where the continuity condition @ holds forg as well. The perturbed detector response
resulting from the materialis expressed as in Eq. (B.13) by

ED ~
Ri:/// D(r, @, E)E (1, 2, E)dE d2dV
Vp J4r JO

Eo . .
— / / / n- Q& (r, 2, E)*(r,2 E)YdEdQdA. (B.20)
JaVsnaVp J n-2<0Jo

WhenVp is small compared to the whole spatial domain and the source and detector
separated by large distand®, may be approximated as

R %—/ / / n.Qf (1. Q E)E*(r, 2 E)dEdQdA  (B.21)
daVsNoVp J n:Q<0J0

This is called the surface integral approximation [14]. Its associate error is

Eo
aVsNoVp J n:Q<0J0
x (L, Q, E)dE dQdA. (B.22)

This was proven to be equal to the error associated with the adjoint differen
approximation [14].
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